Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Eur Arch Otorhinolaryngol ; 278(6): 1869-1877, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1233255

ABSTRACT

PURPOSE: To provide a novel solution to reduce aerosol exposure in the operating room during endoscopic sinus and skull base procedures in the COVID-19 era. METHODS: We have designed a 3D printable midfacial mask that partially seals the nose, while allowing instrumentation during endoscopic transnasal surgery. The mask when connected to a vacuum system creates a constant negative pressure inside it, sucking out aerosols and gases generated during surgical procedures. Its effectiveness was tested using vapour exhalations by a human volunteer and drilling bone in a head model. The physical barrier effect was measured using fluorescein atomization in a head model. RESULTS: The pressure and airflow measured remained negative inside it in all the different situations tested. The mask was capable of completely evacuating human adult exhalation, and was more effective than the hand suction instrument. However, it was as effective as hand suction instrument at preventing aerosol spread from bone drilling. The physical barrier effect achieved a 72% reduction in the splatter created from the fluorescein atomization. CONCLUSIONS: The mask effectively prevented the spread of aerosols and reduced droplet spread during simulated transnasal endoscopic skull base surgery in laboratory conditions. This device has potential benefits in protecting surgical personnel against airborne transmission of COVID-19 and could be useful in reducing chronic exposure to the hazard of surgical smoke.


Subject(s)
COVID-19 , Aerosols , Endoscopy , Humans , SARS-CoV-2 , Skull Base/surgery
2.
Am J Otolaryngol ; 41(5): 102576, 2020.
Article in English | MEDLINE | ID: covidwho-592522

ABSTRACT

The coronavirus SARS-CoV-2 (COVID19) pandemic has pushed health workers to find creative solutions to a global shortage of personal protection equipment (PPE). 3D-printing technology is having an essential role during the pandemic providing solutions for this problem, for instance, modifying full-face snorkel masks or creating low-cost face shields to use as PPE (Ishack and Lipner, 2020 [1]). Otolaryngologists are at increased occupational risk to COVID19 infection due to the exposure to respiratory droplets and aerosols, especially during the routine nose and mouth examinations where coughing and sneezing happen regularly (Rna et al., 2017 [2]; Tysome and Bhutta, 2020 [3]). The use of a headlight is essential during these examinations. However, to our knowledge, none of the commercially available or 3D-printable face shields are compatible with a headlight. Hence, using a face shield and a headlight at the same time can be very uncomfortable and sometimes impossible. To solve this problem, we have designed a 3D-printable adapter for medical headlights, which can hold a transparent sheet to create a face shield as an effective barrier protection that can be used comfortably with the headlight. The adapter can be printed in different materials with the most commonly used nowadays being the cost-efficient PLA (Polylactic Acid) used for this prototype. The resulting piece weighs only 7 g and has an estimated cost of $0.15 USD. The transparent sheets, typically made from polyester and used for laser printing, can be purchased in any office material store with a standard price of 0.4 USD per unit. After use, the transparent sheet can be easily removed. We trialed the adapter in 7 different headlights. All of these headlights accommodated the printed blocks extremely well. The headlights were used in many different settings, including the ENT clinic, the operating room, the emergency room, the ENT ward and the COVID19 intensive care unit (ICU) for a two weeks period. All doctors using the headlight felt they were fully protected from respiratory droplets, blood, sputum and other fluids. The face shield with the headlight has been found very useful for treating epistaxis, changing tracheostomy cannulas and during routine nasal and oral examinations. The headlight face shield adapter was designed to solve a specific problem among the ENT community; however other specialist can find it useful as well. Nonetheless, manufacturers should take care of specifics problems like this and provide commercially available products to protect the ENT workforce in this new era.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Lighting/instrumentation , Pandemics/prevention & control , Personal Protective Equipment , Pneumonia, Viral/prevention & control , Printing, Three-Dimensional , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL